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Abstract Simplified flow routing model is favourably used for control-based application
because it does not only present acceptable results but also is computationally inexpen-
sive. Recently, the Time Delay model (TD) with two parameters, time constant and time
delay has been developed in order to approximate the river flow in a very wide rectangu-
lar profile. This paper presents an advancement we thereafter call Adaptive Time Delay
model (ATD) that expands the application scope of the TD Model by simulating the flow
using a prismatic trapezoidal geometry. Firstly, the mathematical representation of the ATD
model and the linearized Saint Venant model (SVE) are defined. Secondly, the transfer func-
tions of the ATD model and the complex hydraulic model (SVE) are obtained by Laplace
transformation. Finally, the Taylor expansion technique is used to find cumulants of the
two transfer functions, and consequently equating the cumulants to derive time constant
and time delay of the ATD model as functions of the complex hydraulic model parame-
ters. By applying the fourth order Runge Kutta numerical scheme the flow rate and water
level at downstream reach end are simulated. The innovation of this research is that both
water stage and flow rate are derived through optimization. The performance of the ATD
Model is also presented and compared to the TD Model in a case study. The extension of
the time delay model does not only issue more accurate results but also introduces more
outcomes like flow rate, and relation curves between time delay and time constant with
discharge that might be useful in flood forecasting and other purposes in water resources
operation.
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1 Introduction

One of the most frequent natural disasters is flood, which critically influences a large part of
population on earth. The consequences of flood are loss of human lives and damage to prop-
erties, which have continuously risen over the years due to climate change. The intensity and
duration of flood is significantly depending on rainfall regime, catchment area morphology,
land use of a watershed, and operation policies of upstream dams. Because of the crucial
role of flood in human life, different characteristics of flood have been comprehensively
studied in years.

Flood wave propagation is very significant for hydraulic engineers to develop sev-
eral methods for its analysis and simulation. The characteristics of physical phenomena
including river morphology, initial condition and flow can be spatially and temporally
illustrated by function of flow rate and water level. In his paper (Saint-Venant Ad 1871),
Saint Venant derived a hyperbolic system expressed by partial differential equations to
describe the one dimensional flow in open channels. Because of the inexistence of analyt-
ical solutions, a wide range of numerical approaches to resolve these equations have been
developed, such as the method of characteristics (Abbott 1966), finite difference schemes
(Abbott 1979; Harley 1967; Fread 1985; Garcia and Kahawita 1986; Stoker 1957), finite
element schemes (Cooley and Moin 1976; Szymkiewicz 1991), finite volumes schemes
(Cozzolino et al. 2011, 2014a, b, DAniello et al. 2015), spectral (finite) volume schemes
(Wang 2002; Kannan and Wang 2012; Cozzolino et al. 2012), smoothed particle hydrody-
namics (Monaghan 1992; Zhou et al. 2004; Liu and Liu 2010; Violeau and Rogers 2016).
For practical purposes, numerous efforts have been made to simplify the full Saint Venant
equation (SVE) in order to reduce computation times and data demand while ensuring a rea-
sonable result. These include the well-known classical methods such as the Hayami model
(Hayami 1951), Muskingummodel (Cunge 1969), Kalinin-Milyukov method (Apollov et al.
1964). The theory of Hayami is originally recognized as an analytical solution of diffusive
wave model with an assumption of constant celerity and diffusivity, and without lateral flow.
Since many years, improvement of Hayami model for simulating and controlling open chan-
nel flow has been presented, e.g., in Bolea et al. (2010), Moussa (1996), Wang et al. (2014),
and Cimorelli et al. (2013, 2014). The original Muskingum technique, which includes two
parameters: travel time K and storage weighting factor x, is based on the equation of con-
tinuity and storage discharge relationship. It has been commonly applied and innovated in
river flow simulation, for instance, by Bhuyan et al. (2015), Franchini et al. (2011), and
OSullivan et al. (2012). The Kalinin-Miliyukov method defines a characteristic river reach
by assuming that a discharge at a cross section of a reach is not influenced by lateral flow,
and is also a linear function of water storage within that reach. It is extended for stream flow
prediction by Szilagyi (2003, 2006).

Recently, control theory methods have been applied to river flow modeling. The fun-
damental approach is to transform the linearized SVE (or its reduced form) to frequency
domain and then to approximate its transfer function by different mathematical techniques
(Baume et al. 1998). In this way new models for describing flow movement can be obtained.
A popular example is an Integrator Delay Method (ID), which was firstly applied in water
systems for controller design in low frequencies by Schuurmans et al. (1995, 1999). An
upgrade named Integration Delay Zero (IDZ), in which a zero is placed in a system trans-
fer function in order that the model is capable to simulate flow in high frequencies was
developed by Litrico and Fromion (2004a). By focusing on the resonance sensitivity of
waves in channels, the Integrator resonance model (IR) was derived for modeling rivers,
which are short, flat and deep (van Overloop et al. 2010, 2014). One of the most recent
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work by Cimorelli et al. (2015) introduces a new model which can be used for real time
forecasting and optimization. In which, the analytical solution for a cascade of diffu-
sive channel has been derived in Laplace Transform domain accounting for downstream
boundary conditions.

In addition, the application of the first order time delay model for river flow simulation
has been also developed. For instance, using the first order time delay model with two con-
stant parameters, time delay and time constant to simulate the outflow of a river reach is
proposed by Rauschenbach (2001) and Pfuetzenreuter and Rauschenbach (2005). A simi-
lar, but more advanced approach is that transforms the linearized SVE into the frequency
domain and approximate its solution by a transfer function of first order delay system by
Dooge et al. (1987) and Litrico and Fromion (2004b). The relation between parameters of
both models is that time constant and time delay are functions of the physical parameters of
the river, such as roughness, bed slope, surface width, river reach length, and so forth so that
those can vary in response with changes of flow rate. Despite the significant enhancement,
the approach with its assumption of the river cross section with infinite width is not applica-
ble to rivers where the cross section has a width smaller than 10 times the flow depth (Chow
1959). Furthermore, due to the significance of reservoirs system management in general as
well as flash flood forecasting in particular, it is vital to extend the model to prismatic trape-
zoidal channel cross sections in order to not only broaden the models applicability, but also
to improve its accuracy. Other studies of Cimorelli et al. (2013) and Cimorelli et al. (2014)
introduce a reduced model of SVE named Linear Parabolic Approximation (LPA) devel-
oped by ignoring inertial terms of SVE. An analytical solution is then obtained in terms of
discharge and water level variations, taking account of backwater effect and downstream
lateral flow. This has not been mentioned in previous time delay models. Therefore, the dif-
ferent point of the adaptive time delay model (ATD) does not only approximate the full SVE
but also use both water level and the flow rate to calculate the model parameters. This can
be considered as an advancement of previous time delay models (Schuurmans et al. 1999;
Pfuetzenreuter and Rauschenbach 2005; Litrico et al. 2010). Based on a similar approach
to Litrico et al. (2010) the paper illustrates a methodology for a simplified prismatic trape-
zoidal river cross section that produces water level and discharge as outputs. Moreover,
the advantage over the model in Rauschenbach (2001) is also proven by comparing the
goodness of fit of both in a case study.

The remainder of this paper describes the methodology applied in Section 2, while the
model will be applied to a case study and its performance evaluated in Section 3.

2 Methodology

The methodology is motivated by the fact that for a trapezoidal geometry, the surface width
changes in response to the fluctuation of water level in a cross section in each time step,
whereas it is constant in the case of a rectangular channel. This indicates that water level is
a very significant variable, which should be adapted accordingly during the calculation of
the parameters of the ATD model. First, we will implement the ATD method based on the
scheme outlined in Litrico et al. (2010) and Munier et al. (2008). The algorithm consists of
3 steps:

– Define the two physical models (linearized SVE and ATD);
– Derive the transfer functions of linearized SVE and the adaptive time delay (ATD)

model and
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– Determine the parameters of the ATD model from parameters of the linearized SVE by
Taylor expansion and moment matching.

These steps will be described in detail in the following sections.

2.1 Definition of Physical Models

Firstly, the structure of the ATD model is described as in Eq. 1. It is a nonlinear system with
delay

{
q̇ (t) = f (q (t) ,Qin (t))

Qsim (t) = h (q (t − Td (q)))
(1)

According to the Lemma 1 in Litrico et al. (2010) the system (1) is linearized round an
equilibrium point Qo to derive the linear system with delay as follows.

{
Tc

dq
dt + q(t) = Qin(t)

Qsim (t) = Gq(t − Td)
(2)

where G is the gain, Tc is the time constant, Td is the time delay, Qin(t) is the inflow, q(t)

is the state of the system and Qsim(t) is the simulated outflow. Then the system (2) is used
to approximate the linearized SVE.

Secondly, the linearized SVE is written for a river of length L(km) assuming uniform
flow and absence of lateral flow (Litrico and Fromion 2004b) as follows:

B
∂y

∂t
+ ∂q

∂x
= 0 (3a)

∂q

∂t
+ 2V

∂q

∂x
+ 2gSb

V
q +

(
C2 − V2

)
B

∂y

∂x
− gB (1 + K) Sb = 0 (3b)

where q(x, t)(m3/s) is the deviation of flow rate from equilibrium value Qo, y(x, t)(m)

is the deviation of water level from equilibrium value Yo, C(x)(m/s) is the celerity,
V (x)(m/s) is the mean velocity, g(m/s2) is the gravitational acceleration, Sb(m/m) is the
river bed slope, and B(m) is the water surface width.

The boundary conditions of the system includes: q(0, t) is the upstream inflow at station
(0 km), and q(L, t) is the outflow discharge at the downstream station. The parameter K

in Eqs. 3a–3b is presented as follows:

K =7

3
− 4A

3BP

∂P

∂y
(4)

with the wetted perimeter P(m) and the cross sectional area A(m2).

2.2 Derivation of Transfer Functions

In this step the physical models are transferred into frequency domain. Main aim of trans-
ferring these models to frequency domain is to explicitly represent the relationship between
the inflow and outflow. Following a similar approach as in Litrico et al. (2010) and Munier
et al. (2008), the Laplace Transformation is applied to Eqs. 2 and 3a–3b to derive the transfer
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functions given in Eq. 5b for the ATD model and Eq. 5d for the linearized SVE model,
respectively.

q (L, s) = Ge−sTd

1 + sTc
q(0, s) (5a)

TFATD(L, s) = Ge−sTd

1 + sTc
(5b)

q (L, s) = eε2Lq(0, s) (5c)

TFSVE(L, s) = eε2L; ε2 = as + b −
√
cs2 + ds + b2 (5d)

a = Fr

C(1 − Fr2)
; b = (1 + K)BSb

2A(1 − Fr2)
; c = 1

C2(1 − Fr2)

2

(5e)

d = SbB

VA

(2 + (K − 1)Fr2)

(1 − Fr2)2
;Fr =

√
q2B

gA3
(5f)

Where q(L, s) is the outflow at station L, q(0, s) is the inflow at station 0, s is the
Laplace operator, Fr is the Froude number for trapezoidal channel. In Eqs. 5a–5f, the
backwater effect is ignored by assuming that the river has infinite downstream length.

2.3 Determination of the ATDModel Parameters from the Linearized SVEModel

To compute outflow of the river, the TF of SVEmust be transferred to time domain, which is
not that simple with this hyperbolic system. In this paper we apply the approach suggested
in Dooge et al. (1987) and Litrico and Fromion (2004b) approximating the TF of SVE by
TF of ATD model in which the cumulants of both transfer functions are equated. As the
SVE will be approximated by the first order delay model, the accuracy of the simulated
discharge will be enough by determining the first three cumulants of both TFs as described
in the following steps:

– Firstly, Taylor expansion is applied to both TFs up to the second order as in Eq. 6.

TF (x, s) = M1 (x) + M2 (x) s + M3 (x) s2 + 0
(
s3

)
(6)

– Secondly, the cumulants of both TFs are derived by taking the logarithm of the TFs to
second order (r = 2).

Cu [TF (x, s)] = (−1)R
dr

dsr
(ln[TF(x, s)])s=0 (7)

– and finally the cumulants of the TF of SVE are matched to those of the ATD model and
consequently the ATD parameters are defined as follows:

Td = 2L

(1 + K)V
− Tc;Tc =

√
4 − (K − 1)2Fr2

gSbFr
2(1 + K)3

2L;G = 1 (8)

These parameters will then be applied in the ATD model (2) in order to simulate outflow
of a river reach. For a trapezoidal channel, Fr and K in Eq. 8 are defined as a function of
y, and Q. With an assumption of uniform river flow, the water level y which is related to Q
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will be estimated by the method of the section factor AR2/3 for uniform flow computation
(Chow 1959):

AR2/3 = nQsim√
Sb

;A = (b + my) y;R = A/P; P = b + 2y
√
1 + m2 (9)

The left side of Eq. 9 is a section factor AR2/3 depending on the geometry of the water
area (water level y, side slope m, and bottom width b) while the right sides is determined by
Manning coefficient n, discharge Qsim, and bed slope Sb. To find the value y, optimization
technique is applied to solve the set of equations. Water level y is then used to approximate
instantaneous hydraulic characteristics of the channel, and Tc, Td subsequently. Afterwards,
the fourth order Runge Kutta is utilized to integrate the ATD system in Eq. 2 to the next
system state.

3 Case Study

To illustrate the performance of the ATD model, a small river reach located on an upstream
part of Thu Bon River in central area of Vietnam is selected which is shown in Fig. 1. The

Fig. 1 Location of the selected river reach at Vu Gia Thu Bon river basin in Central Vietnam
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Table 1 Characteristic of studied river reach at upstream Vu Gia Thu Bon river basin

Geometry data Flow data

L (km) b (m) m Daily upstream observed Daily downstream observed

flow rate at Nong Son station water level at Giao Thuy station

22 40 2 1 year period of 2010 1 year period of 2010

reach starts from Nong Son gauge station and ends at Giao Thuy gauge station. The geom-
etry data of the river reach are listed in Table 1. 1-year-period upstream and downstream
flow data at both gauge stations are considered as referenced data for the simulations in this
paper. According to the collected data at Giao Thuy, water depth reaches from 5.0 to 8.0 m
during main flood season. This indicates that ATD with trapezoidal geometry should be uti-
lized to enhance good accuracy in estimating the flood peak in this narrow but deep stream.
The idea is that the ATD model parameters will be calibrated using the referenced data for
3 months of main flood season (October–December) to obtain the relation curves Q & Tc

and Q & Td for a wide range of discharge Q. After calibration the model is validated using
reference data from the drought season (January-June) and compared to the model given in
Rauschenbach (2001).

3.1 Model Calibration and Validation

The model calibration is basically an optimization technique that minimizes a quadratic
error of simulated and observed outflow Q or water stage y. The two possible objective
functions are expressed in Eq. 10. As can be seen in the data Table 1, many physical param-
eters such as the Manning coefficient n, and river bed slope Sb required to estimate the
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Fig. 2 Model calibration results for the two objective functions for discharge and water level



www.manaraa.com

5694 L. D. Nguyen et al.

Table 2 Results of calibration, validation and estimated model parameter

Criteria Calibration Validation Model parameter

Q y Q y n Sb

NSE 0.94 0.94 0.91 0.9 0.035 0.0014

PBIAS −10.5 −6.5 0.68 4.06

outputs ysim and Qsim were not available. Therefore, these were also estimated during the
optimization process to achieve a best match between simulated and observed outputs.

min
n∑

i=1

(
yiobs − yisim

)2 ;min
n∑

i=1

(
Qi
obs − Qi

sim

)2
(10)

The ATD model calibration results are depicted in Fig. 2. The model uses geometry
data in Table 1 and 3 months of upstream main flood to simulate the downstream flood
of which returns both flow rate and water level. By comparing the results with referenced
data at downstream, the model presents a quite well goodness of fit as expressed through
Nash-Sutcliffe Efficiency (NSE) (11) and Percent bias (PBIAS) (12).

NSE = 1 −
[ ∑n

i=1

(
Qi
obs − Qi

sim

)2
∑n

i=1

(
Qi
obs − Qi

mean

)2
]

;NSE = 1 −
[ ∑n

i=1

(
yiobs − yisim

)2
∑n

i=1

(
yiobs − yimean

)2
]

(11)

PBIAS = 1 −
[∑n

i=1

(
Qi
obs − Qi

sim

)
100∑n

i=1 Q
i
obs

]
; PBIAS = 1 −

[∑n
i=1

(
yiobs − yisim

)
100∑n

i=1 y
i
obs

]

(12)

Fig. 3 Relation of Time constant Tc and Time delay Td with inflow Q
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Fig. 4 Model validation in response with discharge and water level

The Table 2 shows the NSE coefficient equals to 0.94 for both Q and y while PBIAS
reaches −10.5 for Q and 6.5 for y. This indicates that the ATD model returned a very good
result according to the guidelines of evaluating stream flow models in Moriasi et al. (2007).

During calibration the nonlinear relationships between the time constant Tc, the time
delay Td with discharge Q are determined as depicted in Fig. 3. The linearly interpolated
parameters values from these curves are directly used by ATD model to simulate down-
stream flood in different upstream flood scenarios. This approach significantly reduces the
computation time as well as raises feasibility for real time flood simulation application. In
the Table 2, n and Sb were also determined as 0.035 and 0.0014, respectively. Based on
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Table 3 Result of 2 models
comparison Criteria Trapezoid Rectangular

NSE 0.94 0.89

Deviation (m) 0.2 1

estimated parameters, it should be a deep river with stone and weeds at the bottom that is in
accordance with attributes of the selected river reach located in mountainous area of Vu Gia
Thu Bon basin at which agriculture and forest land exist (Mai 2009).

The validation task is executed by applying the calibrated curves of Tc , and Td to sim-
ulate outflow for 6 months of drought period. The result is depicted in Fig. 4, where the
model shows a very good result presented by the NSE of 0.91 for Q and 0.90 for y as well
as by PBIAS of 0.68 for Q and 4.06 for y. As in Moriasi et al. (2007) this proves that the
model is valid for application to flow routing of this river reach.

3.2 Comparison for both Time Delay Models

The performance of the ATD model in comparison to the model in Rauschenbach (2001)
based on rectangular profile is also evaluated for the main flood season. The measured water
level is used to evaluate the goodness of both models. The technique for approximating
water level from section factor (Chow 1959) is applied to simulate the water level from the
flow rate estimated by the model in Rauschenbach (2001). The results are shown in Fig. 5
and Table 3. It can be seen that the water level of the ATD model matches with observed
stage better than the water level of the model in Rauschenbach (2001). In terms of NSE,
the accuracy of ATD model for this case study is 0.94 compared to 0.89 of the model in
Rauschenbach (2001). In Fig. 5, it is clear that assuming a rectangular profile overestimates
the water level peak of 8.1 m in period time t from the day 45 to 47 by approximately 1.0
m compared to the ADT model which underestimates by only 0.2 m. Therefore, the ATD
model returns more accurate results for the same hydrological conditions. This has very
important role for decision maker who can determine an effective plan of flood prevention
and excavation.

4 Conclusion

In this paper an adaptive time delay model based on a prismatic trapezoidal geometry was
introduced. The model is an extension of the river model developed in Rauschenbach (2001)
for very wide rectangular cross section channel. The method uses moment matching to
derive the parameters of the model from linearized SVE model. The application scope of
the time delay models is also now opened for small deep rivers. After calibration of the
model to obtain the nonlinear relation curves of Tc and Td with Q, the outflow simulation
for different scenarios becomes very simple, fast and accurate. Therefore, this method can
be utilized to simulate, and design control strategies for river systems. However, taking
account of backwater effect in this ATD model is not considered in this work. This subject
would be studied thoroughly. Although the application of the model in case study showed
very promising results, the further improvement with downstream boundary conditions may
expand the applicability of the model.
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